C1.4 Créer et décrire des suites numériques comprenant des nombres entiers, et représenter des relations entre ces nombres.

Habileté : créer et décrire des suites numériques comprenant des nombres entiers


Lorsque l’élève comprend les opérations mathématiques entre des nombres, elle ou il peut ensuite déterminer les prochains termes des suites numériques, qu’elles soient linéaires ou non.

Habileté : représenter des relations entre les nombres d’une suite


Les suites et les règles peuvent être utilisées pour démontrer les relations entre les nombres. Leur utilisation est une stratégie utile pour développer la compréhension des concepts mathématiques, comme savoir quel signe utiliser lorsque deux nombres entiers sont additionnés ou soustraits.

Source : Curriculum de l’Ontario, Programme-cadre de mathématiques de la 1re à la 8e année, 2020, Ministère de l’Éducation de l’Ontario.

Habileté : faire des généralisations à partir de conjectures


La généralisation est au cœur de l’activité mathématique. En algèbre, elle permet de développer la pensée algébrique de l’élève.

Pour arriver à une généralisation, les élèves observent et analysent des situations pour ensuite proposer des conjectures. Au moment de proposer une conjecture, elles et ils doivent être en mesure d’exprimer leur raisonnement dans leurs propres mots. Les élèves doivent ensuite vérifier si leur conjecture est valable dans d’autres situations. Elles et ils appuient leurs conjectures au moyen de représentations concrètes et semi-concrètes et d’arguments mathématiques. Ce processus, parfois informel, permet aux élèves d’apprendre à formuler plus clairement leurs généralisations.

Source : Guide d’enseignement efficace des mathématiques de la 4e à la 6e année, p. 9-10.

Connaissance : conjecture


Une conjecture est l’expression d’une idée perçue comme étant vraie dans toute situation semblable. L’élève doit être en mesure de proposer une conjecture, la vérifier afin de formuler une généralisation.

Source : Guide d’enseignement efficace des mathématiques de la 4e à la 6e année, p. 10.

Connaissance : nombres entiers


Les nombres entiers sont les nombres qui n’ont pas de partie décimale ou dont la partie décimale est nulle. Les nombres entiers peuvent être positifs ou négatifs. Aussi, ils sont considérés comme des nombres rationnels, puisque tout entier peut être exprimé sous forme de fraction.

Exemples

\(2,0 = \frac{2}{1}\)

\(-7 = - \frac{7}{1} \)